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C O N S T R U C T I O N  OF E X A C T  SOLUTIONS OF T H E  B O U S S I N E S Q  E Q U A T I O N  

O. V. Kaptsov UDC 517.958 + 532.59 

The known model of nonlinear dispersive waves, which was proposed by Boussinesq in the 
second half of the nineteenth century, is considered. Solutions of the Boussinesq equation, 
which are ezTressed via elementary functions and describe wave packets, their interaction 
between each other and with solitons, and some other structures are obtained. To construct 
these solutions, Hirota's biIinear representation and differential relations specified by ordinary 
differential equations with constant coe~cients are used. 

One of the classical Boussinesq equations [I, 2], which describe shallow-water waves moving in both 
directions, has the form 

3 1 ha 

where g is the acceleration of gravity, h0 is the undisturbed depth, and T/is the deviation of the water surface 
from the undisturbed state. After the transformations t/' = 2h0r/, d = ~]r~g/hot, and z' = v~z/ho the equation 
reduces to the form 

= + , + r/=,=,~z~. (1) 

Equation (1) attracts the attention of researchers owing to the fact that it possesses soliton solutions. A 
formula of N-soliton solutions was derived by Hirota [3], and rational solutions were given in [4]. In the 
present study, new solutions of the Boussinesq equation are found, and some of them are interpreted from a 
hydrodynamic point of view. In particular, solutions that describe the propagation of wave packets and their 
interaction are obtained. 

As Hirota noted, it is convenient to begin the construction of solutions of Eq. (1) by reducing it to the 
bilinear form. To do this, it is necessary to make the replacement 

r/' = 2 ~ (In u) 

and to integrate twice the resulting equation. Assuming the functions appearing in the integration to be zero, 
we come to the bilinear equation 

= 0. (2)  ut tu  - -  ur 2 - -  uu,z,z 4 "  4u,uz=z - -  3 u 2 z z  - -  uuzt - }"  u= 

For the sake of simplicity, the primes in the variables t and z are omitted in (2) and subsequent equations. 
As is known [31, one- and two-soliton solutions of Eq. (1) are produced by the following solutions of 

Eq. (2): 

ul = 1 + s exp(kz 4- ktv/1 + k 2 ), 

u2 = 1.+ exp (klz 4:. mlt  + s]) + exp(k2z + m2t + s2) 

+P12 exp ((k] + k2)z + (ml + m2)t + sl + s2), 
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where s, Sl, s2, k, kl,  and k2 are arbitrary constants, m i  = q-ki~/-1-b k 2, and 

3 ( k l  - k2) 2 + ( n l  - n2 )  2 
ni  = m i l k i .  (3) P12 -- 3(kl  q" k2) 2 q- (hi  - n2) 2 '  

It is noteworthy tha t  the functions ul and u2 satisfy the fourth-order ordinary differential equation 

d~(a~  - k ~ ) ( d z  - k2)(d~ - k~ - k 2 ) ~  = O, (4)  

where dz is a derivative with respect to z. It turns out tha t  there are other solutions of this equation producing 
solutions of the  Boussinesq equation. 

The system formed by Eqs. (2) and (4) is integrated in two steps. We choose the constants kl and 
k2 at the first step and find the  general solution of Eq. (4) at the  second. The  variable t enters into this 
solution parametrically. To determine the dependence of the function u on time, the general solution obtained 
is substi tuted into Eq. (2) at the second step. As a result, we obtain an overdetermined system of ordinary 
differential equations. By solving this system, we find the function u(t, z) producing the solution of the 
Boussinesq equation. We shall illustrate this scheme by examples. 

We consider the simplest case: kl = k2 -- 0. The solution of Eq. (4) is the polynomial u = r3x 3 + r 2 z  2 q- 
r l z  + r0. Here ri can be t-dependent.  With the polynomial subst i tuted into Eq. (2), it is easy to obtain two 
known solutions: 

u = ( z  + t)  s + (~  + t)  ~: 6 t ,  u = z 2 - ~2 _ 3.  

If kl - 0 and k2 --  k ~ 0, the general solution of Eq. (4) is u = (rsz + r2)  exp (kz) + r l z  + r0. After a 
substitution of the  given function u into (2), we find ri: 

r 3 = 1 ,  r2 - t, rl -" s e x p ( m t ) ( l  + v / l  + k2-F 2k2)/6k, 

, 'o = ~, e.,q, (~t)(1 + t(1 + ~ + 2~)16k), 

where s is an arbitrary constant  and m = k~/1 + k 2. 
For kl -- k2 = k ~ 0, it is possible to find the following solution of Eqs. (2) and (4): 

. = e ~ p  ( 2 k x  - 2 ~ t )  + e ~ p  ( k x  --  m 0 ( r , x  + "2) + . 0 ,  

where rl = s, r2 = - s t ( 2 k  2 + 1 ) / ~ ,  ro = - s2 (4k  2 + 3)/12k2(1 + k2), s is an arbitrary constant,  and 
m =  v ~ + k  4. 

In the case of purely imaginary constants kl = ik and k2 = - i k ,  there are two classes of solutions 
of Eqs. (2) and (4). The  first class is formed by functions tha t  generate singular solutions of Eq. (1), and 
the second by those producing regular solutions of this equation. To the first dass  we at t r ibute  the following 
solutions: 

u = sin (kz  - mr) + ax + bt, u = sin (kz) + cl cos (mr) + csin (mr). 

Here 

/ 3ra 2 a(2k 2 - 1) ~/1 - c 2 + kZc 2 - 4k f 
m,--- v ~ - k 4  , a~'-V3ZTk2 , b - - 1 ~ / ~ _ _ ~ 2  , CI = - -  1 _ k 2  , cER. 

The second class is represented by the solution 

4k 2 - 1 (_ tV  ~ k2 u m s i n ( k z ) + e x p ( t ~ / ' ~ - k 2 ) +  4 ( k 2 _  1 ) exp -- ). (5) 

A very unusual solution of the  Boussinesq equation shown in Fig. 1 for k = 1.5 corresponds to function (5). 
This solution is periodic in z, and its ampli tude tends exponentially rapidly to zero for t -* 4-00. The specifics 
of this solution is that ,  following Lighthill [5, p. 299], a wave arises "from nothing" during a short t ime interval 
and then damps rapidly. 
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Of special interest is the  case of conjugate complex numbers k] = a + ib and k2 = a - ib, the solution 
of Eqs. (2) and (4) being of the  form 

u = 1 + 2 cos (b= + qt) e x p ( a z  + r t )  + p]2exp(2a= + 2r$). (6) 

Here r and q are the  real and imaginary parts of the number  m = v t k - ~ k  -T, and pzz is determined by formula 
(3). By analogy with the  Korteweg-de Vries and sine-Gordon modified equation [4, 6], we call the solution of 
Eq. (1) that  corresponds to  function (6) a breeder. The  behavior of the breezer is determined by the _numbers. 
a and b. If we take a = 0.2 and b = 2, the wave packet moving with group velocity vet = - r / a  = 17.1 will 
correspond to solution (6). The  breezer for t = 0 is shown in Fig. 2. No extension of the  wave packet occurs 
with time. It is possible to decrease the ampli tude of the  wave packet (the maximum ampli tude of the waves 
forming the  wave packet) by decreasing the parameter  b and leaving a unchanged. For example, the ampli tude 
is somewhat higher than  0.4 for b = 1, and it does not exceed 0.2 for b = 0.95. A further decrease in the 
parameter b leads to restructuring of the packet in a solitonlike structure over which the waves ("ripples") 
run. We shall call this s t ructure  a solitonlike breezer. Figure 3 shows the breezer at the moments  of t ime t = 0 
and t = 30 (b = 0.933). If the  parameter  b is further decreased, the solution of Eq. (1), which corresponds to 
the function (6), becomes discontinuous. It is necessary to note tha t  breezer-type smooth solutions were not 
found for the Korteweg-de Vries equation. 

It is easy to write an ordinary differential equation satisfied by a function producing a three-soliton 
solution of the equation 

d=(d= - kl)(d= - k2)(d= - k3)(d= - kl - kz)(dz - kl - k3)(d= - k2 - k3)(d= - kl - k2 - k3)u = 0. (7) 

By choosing the constants ki in various ways, by finding the general solution of Eq. (7), by subst i tut ing it into 
(2), and by integrating second-order ordinary equations, one can obtain various solutions of the Boussinesq 
equation. 

We shall give a solution thai  describes the elastic soliton-breezer interaction. This solution arises in the 
case where kl and k2 are conjugate complex numbers, and k3 is a real number.  The  corresponding function u 
has the form 

u = 1 + 2 cos (bx + qt) exp (ax + rt)  + p12 exp (2ax + 2rt)  + exp (k3z  + rn3t) 
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+ 2(p13, cos (bz + qt) - Pl3i sin (bz + qt)) exp ((a + kz)z + (r + mj)t)  

+ Iplj12p]2 exp((2a + ks)z + (2r + mj)t).  

Here p12 is given by formula (3), and pl3 is given by the same formula with replacement of the subscript 2 
by 3; a and b, r and q, and plJr and pl3i denote the real and imaginary parts of the complex numbers k], 
m = k]~/1 + k~, and p13, respectively. Figure 4a and b show the wave packet and the soliton before and after 
the interaction. It is possible to obtain a solution that describes the soliton-solitonlike breezer interaction by 
a choice of the free parameters: a = 0.5, b = 1.23, and k3 = 1. 

Various exact solutions of the Boussinesq equation can be found using Eqs. (7) and its higher-order 
analogs. Omitting the concrete form of the function, we note that a solution that describes the interaction of 
two breezers is derived from the expression for a 4-soliton solution [3] if the pairs of numbers kl and k2 and 
k3 and k4 axe taken as conjugate complex ones. The problem of the stability of the solutions obtained still 
remains open. Of interest is performing experiments with a view for studying breezer solutions. 

In concluding, we mention that the cited scheme of constructing exact solutions is valid for other 
equations that admit Hirota's bilinear representation, the structure of the differential relations (4) and (7) 
remaining the same. 

This work was carried out within the framework of Project No. 43 of the Siberian Division of the Russian 
Academy of Sciences "Investigation of Surface and Internal Gravity Waves in Fluids" and was supported by 
the Russian Foundation for Fundamental Research (Grant No. 96-01-00047). 
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